Affiliation:
1. Department of Psychology The University of Texas at Arlington Arlington Texas USA
Abstract
AbstractObjectiveTo decipher the underlying mechanisms of nitroglycerin (NTG)‐induced migraine electrophysiologically.BackgroundMigraine is a recurrent primary headache disorder with moderate to severe disability; however, the pathophysiology is not fully understood. Consequently, safe and effective therapies to alleviate migraine headaches are limited. Local field potential (LFP) recording, as a neurophysiological tool, has been widely utilized to investigate combined neuronal activity.MethodsWe recorded LFP changes simultaneously from the anterior cingulate cortex, posterior nucleus of the thalamus, trigeminal ganglion, and primary visual cortex after NTG injection in both anesthetized and freely moving rats. Additionally, brain coherence was processed, and light‐aversive behavior measurements were implemented.ResultsSignificant elevations of LFP powers with various response patterns for the delta, theta, alpha, beta, and gamma bands following NTG injection were detected in both anesthetized and freely moving rats; however, a surge of coherence alternations was exclusively observed in freely moving rats after NTG injection.ConclusionThe multi‐region LFP signatures and brain coherence alternations in response to NTG‐induced migraine attacks were determined. Furthermore, the results of behavior measurements in the freely moving group indicated that NTG induced the phenomenon of photophobia in our study. All these findings offer novel insights into the interpretation of migraine mechanisms and related treatments.
Subject
Neurology (clinical),Neurology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献