Reconstructing rodent brain signals during euthanasia with eigensystem realization algorithm (ERA)

Author:

Aqel Khitam,Wang Zhen,Peng Yuan B.,Maia Pedro D.

Abstract

AbstractWe accurately reconstruct the Local Field Potential time series obtained from anesthetized and awake rats, both before and during CO$$_2$$ 2 euthanasia. We apply the Eigensystem Realization Algorithm to identify an underlying linear dynamical system capable of generating the observed data. Time series exhibiting more intricate dynamics typically lead to systems of higher dimensions, offering a means to assess the complexity of the brain throughout various phases of the experiment. Our results indicate that anesthetized brains possess complexity levels similar to awake brains before CO$$_2$$ 2 administration. This resemblance undergoes significant changes following euthanization, as signals from the awake brain display a more resilient complexity profile, implying a state of heightened neuronal activity or a last fight response during the euthanasia process. In contrast, anesthetized brains seem to enter a more subdued state early on. Our data-driven techniques can likely be applied to a broader range of electrophysiological recording modalities.

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Montánsa, F., Chinestab, F., Gómez-Bombarellic, R. & Kutz, N. Data-driven modeling and learning in science and engineering. Elsevier Masson SAS 347, 845–855 (2019).

2. Kutz, N., & Brunton, S. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108380690

3. Brunton, S. Applying machine learning to study fluid mechanics. Acta Mechanica Sinica 37(12), 1718–1726 (2021).

4. Watkins, D. Fundamentals of Matrix Computations (Wiley-Interscience, New York, 2010).

5. Nicholson, K. Linear Algebra with Applications (Lyryx Learning Inc, Calgary, Alberta, Canada, 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3