Chilling and forcing proceed in parallel to regulate spring leaf unfolding in temperate trees

Author:

Wang Xinbo1ORCID,Xu Hanfeng1,Ma Qimei1,Luo Yue1,He Dashan1,Smith Nicholas G.2ORCID,Rossi Sergio3,Chen Lei1ORCID

Affiliation:

1. Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu China

2. Department of Biological Sciences Texas Tech University Lubbock Texas USA

3. Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Quebec Canada

Abstract

AbstractAimTemperature is the main driver of growth reactivation in plants of extratropical regions. Accumulations of chilling and forcing units during dormancy co‐regulate spring phenology. Here, we aimed to answer whether chilling and forcing proceed in parallel or sequentially to regulate spring phenology in temperate trees.LocationEurope.Time Period1951–2016.Major Taxa StudiedNine temperate woody species.MethodsUsing long‐term and large‐scale records of in situ leaf unfolding dates of temperate tree species at more than 2300 sites, we analysed the rolling partial correlations between leaf unfolding dates and chilling and forcing in winter and spring using a weekly smoothing window. Through process‐based modelling, we further identified the start of forcing accumulation and the end of chilling accumulation using the Unified model and compared the model efficiency of the Parallel and the Sequential models.ResultsWe observed negative responses of leaf unfolding dates to accumulations of both chilling and forcing units for most of winter and spring across successional types of species (early‐ and late‐successional taxa), elevations and periods. Using the Unified model, we also found overlapping windows for chilling and forcing accumulations. Moreover, the Parallel model performed better than the Sequential model. These findings suggested that chilling and forcing requirements may be fulfilled simultaneously in temperate trees.Main ConclusionsOur study not only provides a guideline for identifying the effective periods of chilling and forcing, but also a general and robust perspective that accumulations of chilling and forcing act in parallel to regulate spring leaf unfolding in temperate trees, promoting more precise and reasonable predictions of temperature‐driven phenological shifts under future climate change.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3