Towards a Physiological Modeling of Sweet Cherry Blossom

Author:

Chmielewski Frank-M.1ORCID,Götz Klaus-Peter1

Affiliation:

1. Agricultural Climatology, Faculty of Life Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany

Abstract

For several years, there has been a need in phenological modeling to better account for physiological processes during the winter dormancy of woody plants, which is here addressed to the sweet cherry cultivar ‘Summit’ (Prunus avium L.). This study compares three sequential phenology models (M1–M3) for the beginning of ‘Summit’ blossom in the experimental sweet cherry orchard in Berlin-Dahlem (Germany) between 2011/12–2019/20 (model development) and 2020/21–2022/23 (model validation). M1 represents an inverse modeling approach where the chilling and forcing requirements of ‘Summit’ were optimized solely from observed flowering data. In contrast, M2 and M3 are more physiologically based as they already incorporate biological knowledge, so that the model parameters were calculated directly within the specified developmental phases. Here, M2 is a two-phase model that considers experimental data for the date of endodormancy release (t1) of nine years (2011/12–2019/20) to calculate the chilling and forcing requirements. Finally, M3 is a newly developed three-phase model that additionally includes the onset of ontogenetic development (t1*) and the abscisic acid (ABA) content of ‘Summit’ flower buds during the ecodormancy phase (t1 − t1*). The results indicate that the inclusion of ABA-related heat weighting during ecodormancy significantly improves the performance of M3 compared to M1 and M2. While M1 gives satisfactory results in terms of fit and validation, it is considered physiologically unacceptable as it greatly overestimates the chilling requirement of ‘Summit’ by ignoring the ecodormancy phase. M2 accumulates too much heat during ecodormancy as it does not include control by the bud ABA content. The results highlight the need for parameters such as t1, t1*, and the bud ABA content for the physiological modeling of ‘Summit’ blossom. To the best of our knowledge, this is the first study to provide a pathway towards a physiologically based modeling approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3