Phase transition of hafnon, HfSiO4, at high pressure

Author:

Niu Jingjing1ORCID,Lu Ziyao12,Nan Shuai3,Wu Xiang4,Qin Shan5,Liu Yingxin2,Li Weixing1

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System Science Resources and Environment (TPESRE) Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing P. R. China

2. School of Gemology China University of Geosciences Beijing P. R. China

3. Songshan Lake Materials Laboratory Dongguan P. R. China

4. State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences Wuhan P. R. China

5. Key Laboratory of Orogenic Belts and Crustal Evolution School of Earth and Space Sciences MOE Peking University Beijing P. R. China

Abstract

AbstractThe high‐pressure behavior of hafnon has been systematically investigated by combining in situ synchrotron X‐ray diffraction, Raman, high‐resolution transmission electron microscopy (HRTEM) techniques, and theoretical simulations. Hafnon starts phase transition at 26.6 GPa and completes the transition to an irreversible scheelite phase (, Z = 4, a0 = 4.712 Å, and c0 = 10.378 Å) at ∼45 GPa. The HRTEM observation of an interface between hafnon and scheelite phases allows atomic scale understanding of the transition process with a relationship of (200)h‖(112)s, //, and . Hafnon shows a significantly lower transition pressure (∼12.6 GPa), as calculated from the relative enthalpies, than the measured pressure (∼26 GPa), indicating a kinetically hindered process involved in the transition. A high pressure low symmetry phase in hafnon () is identified by the simultaneous appearance of two Raman modes (∼75 and 450 cm−1) at 26.6 GPa and their subsequent simultaneous disappearance at 36.7 GPa. These results are important to understanding the mechanism of the zircon‐scheelite transition for both zircon and hafnon.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Beijing Synchrotron Radiation Facility

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3