Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma

Author:

Chaplygin Aleksey V.1ORCID,Simonenko Elizaveta P.2ORCID,Kotov Mikhail A.1ORCID,Sakharov Vladimir I.3ORCID,Lukomskii Ilya V.1,Galkin Semen S.1,Kolesnikov Anatoly F.1,Lysenkov Anton S.4ORCID,Nagornov Ilya A.2ORCID,Mokrushin Artem S.2ORCID,Simonenko Nikolay P.2ORCID,Kuznetsov Nikolay T.2,Yakimov Mikhail Y.1ORCID,Shemyakin Andrey N.1,Solovyov Nikolay G.1

Affiliation:

1. Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Vernadskogo pr., 101-1, 119526 Moscow, Russia

2. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia

3. Institute of Mechanics, Lomonosov Moscow State University, Michurinsky pr., 1, 119192 Moscow, Russia

4. A. A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky pr., 49, 119334 Moscow, Russia

Abstract

The short-term (5 min) exposure to the supersonic flow of carbon dioxide plasma on ultrahigh-temperature ceramics of HfB2-30vol.%SiC composition has been studied. It was shown that, when established on the surface at a temperature of 1615–1655 °C, the beginning of the formation of an oxidized layer takes place. Raman spectroscopy and scanning electron microscopy studies showed that the formation of a porous SiC-depleted region is not possible under the HfO2-SiO2 surface oxide layer. Numerical modeling based on the Navier–Stokes equations and experimental probe measurements of the test conditions were performed. The desirability of continuing systematic studies on the behavior of ultrahigh-temperature ZrB2/HfB2-SiC ceramics, including those doped with various components under the influence of high-enthalpy gas flows, was noted.

Funder

Russian Science Foundation

Publisher

MDPI AG

Reference72 articles.

1. Laub, B., and Venkatapathy, E. (2003, January 6–9). Thermal protection system technology and facility needs for demanding future planetary missions. Proceedings of the Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal.

2. Swanson, T., Motil, B., Chandler, F., Bruce, W., Dinsmore, C., Kostyk, C., Lysek, M., Rickman, S., and Stephan, R. (2015). NASA Technology Roadmaps TA 14: Thermal Management Systems, National Aeronautics and Space Administration.

3. Entry system technology readiness for ice-giant probe missions;Venkatapathy;Space Sci. Rev.,2020

4. Promising ultra-high-temperature ceramic materials for aerospace applications;Simonenko;Russ. J. Inorg. Chem.,2013

5. A critical analysis of the parameters affecting the oxidation behavior of ultra-high-temperature diboride ceramics;Bianco;J. Am. Ceram. Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3