Ambrosia beetles (Coleoptera: Curculionidae) can directly transmit the fungal pathogens responsible for Rapid ʻŌhiʻa Death

Author:

Roy Kylle123ORCID,Jaenecke Kelly A.45ORCID,Dunkle Ellen J.4ORCID,Mikros Dan4ORCID,Peck Robert W.4ORCID

Affiliation:

1. U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station Hawaiʻi Hawai'i National Park USA

2. Department of Forestry and Natural Resources Purdue University Indiana West Lafayette USA

3. U.S.D.A. Forest Service, Pacific Southwest Region Forest Health Protection Hawaiʻi Hilo USA

4. Hawaiʻi Cooperative Studies Unit University of Hawaiʻi at Hilo Hawaiʻi Hilo USA

5. Department of Biological Sciences Northern Arizona University Arizona Flagstaff USA

Abstract

AbstractThe ecologically and culturally vital tree species, ʻōhiʻa lehua (Metrosideros polymorpha), is threatened by the fungal pathogens Ceratocystis lukuohia and Ceratocystis huliohia, the causal agents of the disease complex called Rapid ʻŌhiʻa Death (ROD). Four invasive ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) species in the Xyleborini tribe colonize ROD Ceratocystis‐infested ‘ōhiʻa and produce inoculum through their frass; however, the potential for direct transmission of the ROD fungi by these beetles was unknown. We fulfilled Leach's rules to support insect transmission of ROD by documenting the visitation of these ambrosia beetles to healthy ‘ōhiʻa trees, culturing C. lukuohia and C. huliohia from the ROD‐associated beetles using three different collection methods at multiple study sites, and challenging healthy ʻōhiʻa seedlings with beetles that were exposed to both C. lukuohia and C. huliohia cultures. We documented all four invasive ROD‐associated ambrosia beetle species including Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, and Xyleborus perforans to regularly visit healthy ʻōhiʻa trees on sticky traps. Viable Ceratocystis propagules were isolated from all species, and C. lukuohia was most commonly isolated of the two ROD‐causing fungi. Consistently across all collection techniques, ROD Ceratocystis spp. were detected on just under 3% of all assayed beetles, with the highest detection rate from X. affinis. All four beetle species were capable of directly transmitting both pathogens to healthy ʻōhiʻa seedlings with a high rate of transfer. Ceratocystis spp. are highly virulent pathogens in trees, and a single inoculation can result in tree death, therefore any direct transmission is a cause for concern. After meeting the criteria of Leach's rules, we propose that Xi. saxesenii, X. affinis, X. ferrugineus, and X. perforans are vectors of C. lukuohia and C. huliohia, particularly in areas of high ROD pressure and tree stress.

Funder

U.S. Forest Service

Purdue University

Publisher

Wiley

Subject

Ecology,Forestry

Reference57 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3