Affiliation:
1. Department of Biology Santa Clara University Santa Clara California 95053 USA
2. Department of Biological Sciences California State University Chico California 95929 USA
Abstract
AbstractQuestionsPlant traits can predict a species‘ relative abundance and its influence on ecosystem processes. However, trait expression and the relative abundance of a species are also influenced by its abiotic and biotic environment. Here, we ask whether the relationship between plant traits and relative abundance is modified by abiotic (e.g., climate and topography) and biotic factors (e.g., community taxonomic and functional diversity) across Californian grasslands.LocationSan Francisco Bay Area.MethodsWe measured specific leaf area (SLA; leaf area/dry mass) and plant height of 19 grass species (family: Poaceae) across 117 plots. We also quantified the relative abundance of each species as well as several biotic attributes of the neighboring grass community including total plant cover, species richness and evenness, community‐weighted mean (CWM) traits, and functional diversity. Using multiple linear regression, we assessed whether abundance could be predicted from traits and the interactions between traits and both biotic and abiotic factors. We fit similar models predicting traits from relative abundance.ResultsGrass species had higher relative abundance in plots where they were taller and had higher SLA. They were also more abundant in communities with low functional richness (FRic) and high functional evenness (FEve), perhaps because of the low resource‐use efficiency of their neighbors and a lack of dominant grasses. Neither abundance nor plant height were associated with abiotic variables, although SLA responded predictably to precipitation according to a bell‐shaped curve. Grasses were taller where they were more abundant, but the impact of abundance on SLA depended on community FEve. Finally, we show strong evidence for community trait similarity, whereby an individual‘s trait expression was positively correlated with the traits of its grass neighbors.ConclusionsTaken together, these results imply that traits are predictive of abundance and vice versa, and these relationships depend on biotic interactions more than climate.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献