High tolerance to zinc but no evidence for local adaptation in the aquatic plant Lemna minor

Author:

Vámos Sofia1ORCID,Li Cheng2ORCID,Moradi Aboubakr2ORCID,van Moorsel Sofia J.12ORCID

Affiliation:

1. Department of Evolutionary Biology and Environmental Studies, University of Zurich Zurich Switzerland

2. Department of Geography, University of Zurich Zurich Switzerland

Abstract

Duckweeds are a widely distributed and economically important aquatic plant family that have high potential for phytoremediation of polluted water bodies. We collected four ecotypes of the common duckweed Lemna minor from the four corners of Switzerland and assessed how their home versus away environments influenced their growth. Additionally, we investigated their response to a metal pollutant (zinc, Zn) in both their home and away environments. Zn is found in freshwater systems and can become harmful to plants at elevated concentrations. We hypothesized that growing in their home environment would help the plants buffer the negative effect of the metal pollutant. To test this, we measured Lemna growth in a common garden experiment in a glasshouse where the four ecotypes were grown in each of the water environments, as well as in three different concentrations of Zn. To investigate whether interactions between Lemna and its microbial community can enhance or reduce tolerance to heavy metal pollution, we sampled chlorophyll‐a as a proxy for algal biomass. Finally, we measured total nitrogen and total organic carbon to describe the abiotic environment in more detail.The four Lemna ecotypes exhibited significantly different growth rates across the water treatments. This difference in fitness was matched with DNA sequencing revealing genetic differentiation between the four ecotypes. However, the effect of the water and Zn treatment on Lemna growth was the same for all ecotypes. We did not find evidence for local adaptation; instead, we observed strong plastic responses. Lemna growth rates were higher under higher Zn concentrations. This positive effect of Zn on Lemna growth could be in part due to reduced competition with algae. We conclude that L. minor ecotypes may exhibit large differences in growth rate, but that the species overall has a high Zn tolerance and strong plastic adaptive potential in novel environments.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Reference62 articles.

1. Wasserqualitaet der Seen Fliessgewaesser und des Grundwassers im Kanton Zuerich 2006

2. Among-strain consistency in the pace and shape of senescence in duckweed

3. A practical guide to measuring local adaptation

4. Intraspecific diversity in aquatic ecosystems: comparison between Spirodela polyrhiza and Lemna minor in natural populations of duckweed;Bog M.;Plants,2022

5. Trimmomatic: a flexible trimmer for Illumina sequence data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3