Maximum likelihood outperforms binning methods for detecting differences in abundance size spectra across environmental gradients

Author:

Pomeranz Justin1ORCID,Junker James R.23ORCID,Gjoni Vojsava4ORCID,Wesner Jeff S.4ORCID

Affiliation:

1. Colorado Mesa University Grand Junction Colorado USA

2. Great Lakes Research Center Michigan Technological University Houghton Michigan USA

3. Louisiana Universities Marine Consortium Chauvin Louisiana USA

4. Department of Biology University of South Dakota Vermillion South Dakota USA

Abstract

Abstract Individual body size distributions (ISD) within communities are remarkably consistent across habitats and spatiotemporal scales and can be represented by size spectra, which are described by a power law. The focus of size spectra analysis is to estimate the exponent () of the power law. A common application of size spectra studies is to detect anthropogenic pressures. Many methods have been proposed for estimating most of which involve binning the data, counting the abundance within bins, and then fitting an ordinary least squares regression in log–log space. However, recent work has shown that binning procedures return biased estimates of compared to procedures that directly estimate using maximum likelihood estimation (MLE). While it is clear that MLE produces less biased estimates of site‐specific λ's, it is less clear how this bias affects the ability to test for changes in λ across space and time, a common question in the ecological literature. Here, we used simulation to compare the ability of two normalised binning methods (equal logarithmic and log2 bins) and MLE to (1) recapture known values of , and (2) recapture parameters in a linear regression measuring the change in across a hypothetical environmental gradient. We also compared the methods using two previously published body size datasets across a natural temperature gradient and an anthropogenic pollution gradient. Maximum likelihood methods always performed better than common binning methods, which demonstrated consistent bias depending on the simulated values of . This bias carried over to the regressions, which were more accurate when was estimated using MLE compared to the binning procedures. Additionally, the variance in estimates using MLE methods is markedly reduced when compared to binning methods. The error induced by binning methods can be of similar magnitudes as the variation previously published in experimental and observational studies, bringing into question the effect sizes of previously published results. However, while the methods produced different regression slope estimates, they were in qualitative agreement on the sign of those slopes (i.e. all negative or all positive). Our results provide further support for the direct estimation of and its relative variation across environmental gradients using MLE over the more common methods of binning.

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3