Bayesian hierarchical modelling of size spectra

Author:

Wesner Jeff S.1ORCID,Pomeranz Justin P. F.2ORCID,Junker James R.34ORCID,Gjoni Vojsava1

Affiliation:

1. Department of Biology University of South Dakota Vermillion South Dakota USA

2. Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction Colorado USA

3. Great Lakes Research Center Michigan Technological University Houghton Michigan USA

4. Department of Biological Sciences, Advanced Environmental Research Institute University of North Texas Denton Texas USA

Abstract

Abstract A fundamental pattern in ecology is that smaller organisms are more abundant than larger organisms. This pattern is known as the individual size distribution (ISD), which is the frequency distribution of all individual body sizes in an ecosystem. The ISD is described by a power law and a major goal of size spectra analyses is to estimate the exponent of the power law, λ. However, while numerous methods have been developed to do this, they have focused almost exclusively on estimating λ from single samples. Here, we develop an extension of the truncated Pareto distribution within the probabilistic modelling language Stan. We use it to estimate multiple λs simultaneously in a hierarchical modelling approach. The most important result is the ability to examine hypotheses related to size spectra, including the assessment of fixed and random effects, within a single Bayesian generalized mixed model. While the example here uses size spectra, the technique can also be generalized to any data that follow a power law distribution.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3