Affiliation:
1. Department of Mathematics and the Maxwell Institute for Mathematical Sciences Heriot‐Watt University Edinburgh UK
2. The Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin UK
3. Department of Integrative Biology University of California Berkeley California USA
4. Centre for Ecology and Conservation, Biosciences University of Exeter Cornwall UK
Abstract
Abstract
Mathematical models highlighted the importance of pathogen‐mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well‐known example.
In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction.
A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations.
By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease‐mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV.
Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.
Funder
Engineering and Physical Sciences Research Council
Biotechnology and Biological Sciences Research Council
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献