Community‐science reveals delayed fall migration of waterfowl and spatiotemporal effects of a changing climate

Author:

Frei Barbara1ORCID,Cox Amelia R.2ORCID,Morales Ana C.1ORCID,Roy Christian2ORCID

Affiliation:

1. Science and Technology Branch Environment and Climate Change Canada Montreal Quebec Canada

2. Canadian Wildlife Service Environment and Climate Change Canada Gatineau Quebec Canada

Abstract

Abstract Climate change has well‐documented, yet variable, influences on the annual movements of migratory birds. The effects of climate change on fall migration remains understudied compared with spring but appears to be less consistent among species, regions and years. Changes in the pattern and timing of waterfowl migration in particular may result in cascading effects on ecosystem function, and socio‐economic and cultural outcomes. We investigated changes in the migration of 15 waterfowl species along a major flyway corridor of continental importance in northeastern North America using 43 years of community‐science data. We built spatially‐ and temporally explicit hierarchical generative additive models for each species and demonstrated that climate, specifically the interaction between minimum temperature and precipitation, significantly influences migration phenology for most species. Certain species' migratory movements responded to specific temperature thresholds (climate migrants) and others reacted more to the interaction of temperature and precipitation (extreme event migrants). There are already significant changes in the fall migration phenology of common waterfowl species with high ecological and economic importance, which may simply increase in the context of a changing climate. If not addressed, climate change could induce mismatches in management, regulations and population surveys which would negatively impact the hunting industry. Our findings highlight the importance of considering species‐specific spatiotemporal scales of effect on climate on migration and our methods can be widely adapted to quantify and forecast climate‐driven changes in wildlife migration.

Funder

Environment and Climate Change Canada

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3