Vegetation structure from LiDAR explains the local richness of birds across Denmark

Author:

Davison Charles W.1ORCID,Assmann Jakob J.23ORCID,Normand Signe245ORCID,Rahbek Carsten1678ORCID,Morueta‐Holme Naia1ORCID

Affiliation:

1. Center for Macroecology, Evolution and Climate, Globe Institute University of Copenhagen Copenhagen Denmark

2. Section for Ecoinformatics & Biodiversity, Department of Biology Aarhus University Aarhus C Denmark

3. Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland

4. Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology Aarhus University Aarhus C Denmark

5. Department of Biology—Center for Sustainable Landscapes under Global Change Aarhus C Denmark

6. Center for Global Mountain Biodiversity, Globe Institute University of Copenhagen Copenhagen Denmark

7. Institute of Ecology Peking University Beijing China

8. Danish Institute for Advanced Study University of Southern Denmark Odense M Denmark

Abstract

Abstract Classic ecological research into the determinants of biodiversity patterns emphasised the important role of three‐dimensional (3D) vegetation heterogeneity. Yet, measuring vegetation structure across large areas has historically been difficult. A growing focus on large‐scale research questions has caused local vegetation heterogeneity to be overlooked compared with more readily accessible habitat metrics from, for example, land cover maps. Using newly available 3D vegetation data, we investigated the relative importance of habitat and vegetation heterogeneity for explaining patterns of bird species richness and composition across Denmark (42,394 km2). We used standardised, repeated point counts of birds conducted by volunteers across Denmark alongside metrics of habitat availability from land‐cover maps and vegetation structure from rasterised LiDAR data (10 m resolution). We used random forest models to relate species richness to environmental features and considered trait‐specific responses by grouping species by nesting behaviour, habitat preference and primary lifestyle. Finally, we evaluated the role of habitat and vegetation heterogeneity metrics in explaining local bird assemblage composition. Overall, vegetation structure was equally as important as habitat availability for explaining bird richness patterns. However, we did not find a consistent positive relationship between species richness and habitat or vegetation heterogeneity; instead, functional groups displayed individual responses to habitat features. Meanwhile, habitat availability had the strongest correlation with the patterns of bird assemblage composition. Our results show how LiDAR and land cover data complement one another to provide insights into different facets of biodiversity patterns and demonstrate the potential of combining remote sensing and structured citizen science programmes for biodiversity research. With the growing coverage of LiDAR surveys, we are witnessing a revolution of highly detailed 3D data that will allow us to integrate vegetation heterogeneity into studies at large spatial extents and advance our understanding of species' physical niches.

Funder

Carlsbergfondet

Villum Fonden

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3