Optimised use of data fusion and memory‐based learning with an Austrian soil library for predictions with infrared data

Author:

Ludwig Bernard1ORCID,Greenberg Isabel1ORCID,Vohland Michael234ORCID,Michel Kerstin5ORCID

Affiliation:

1. Department of Environmental Chemistry University of Kassel Witzenhausen Germany

2. Geoinformatics and Remote Sensing, Institute for Geography Leipzig University Leipzig Germany

3. Remote Sensing Centre for Earth System Research Leipzig University Leipzig Germany

4. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

5. Unit of Soil Ecology Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW) Wien Austria

Abstract

AbstractInfrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (Ct), total nitrogen (Nt) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with R2 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (Ct) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Soil Science

Reference54 articles.

1. Principal component transform — Outer product analysis in the PCA context

2. BMLFUW—(ÖSTERREICHISCHES) BUNDESMINISTERIUM FÜR LAND‐ UND FORSTWIRTSCHAFT UMWELT UND WASSERWIRTSCHAFT. (2013).Bodenfunktionsbewertung: Methodische Umsetzung der ÖNORM L 1076. Wien. 105 pp.

3. Data fusion methodologies for food and beverage authentication and quality assessment – A review

4. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3