Ablation behavior and mechanisms of Cf/(CrZrHfNbTa)C‒SiC high‐entropy composite at temperatures up to 2450°C

Author:

Hu Yang123,Ni Dewei124ORCID,Chen Bowen12,Cai Feiyan123,Zou Xuegang123,Zhang Fan123,Ding Yusheng12,Zhang Xiangyu12,Dong Shaoming12

Affiliation:

1. State Key Laboratory of High‐Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

2. Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

3. University of Chinese Academy of Sciences Beijing China

4. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou China

Abstract

AbstractThe oxide layer formed by ultra‐high melt point oxides (ZrO2, HfO2) and SiO2 glassy melt is the key to the application of traditional thermal structural materials in extremely high‐temperature environment. However, the negative effect of ZrO2 and HfO2 phase transitions on the stability of oxide layer and rapid volatilization of low viscosity SiO2 melt limit its application in aerospace. In this study, the ablation behavior of Cf/(CrZrHfNbTa)C‒SiC high‐entropy composite was explored systematically via an air plasma ablation test, under a heat flux of 5 MW/m2 at temperatures up to 2450°C. The composite presents an outstanding ablation resistance, with linear and mass ablation rates of 0.9 µm/s and 1.82 mg/s, respectively. This impressive ablation resistance is attributed to the highly stable oxide protective layer formed in situ on the ablation surface, which comprises a solid skeleton of (Zr, Hf)6(Nb, Ta)2O17 combined with spherical particles and SiO2 glassy melt. The irregular particles provide a solid skeleton in the oxides protective layer, which increased stability of the oxide layer. Moreover, the spherical particles have a crystal structure similar to that of Ta2O5 and are uniformly distributed in SiO2 glassy melt, which hinder the flow of SiO2 glassy melt and enhance its viscosity to a certain degree. And it reduces the volatilization of SiO2. In summary, the stable oxide layer was formed by irregular particles oxide and the SiO2 glassy melt with certain viscosity, thereby resulting in the impressive ablation resistance of the composite. This study fills a gap in ablation research on the (CrZrHfNbTa)C system.

Funder

National Basic Research Program of China

Program of Shanghai Academic Research Leader

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3