Author:
Song Chaokun,Ye Fang,Cheng Laifei,Liu Yongsheng,Zhang Qing
Abstract
AbstractThree strategies were proposed to prolong the service life of continuous fiber-reinforced silicon carbide ceramic matrix composite (CMC-SiC), which served as thermal-structure components of aeroengine at thermo-mechanical-oxygenic coupling environment. As for some thermal-structure components with low working stress, improving the degree of densification was crucial to prolong the service life, and the related process approaches were recited. If the thermal-structure components worked under moderate stress, the matrix cracking stress (σmc) should be improved as far as possible. The fiber preform architecture, interface shear strength, residual thermal stress, and matrix strengthening were associated with σmc in this review. Introducing self-healing components was quite significant with the appearance of matrix microcracks when CMC-SiC worked at more severe environment for hundreds of hours. The damage can be sealed by glass phase originating from the reaction between self-healing components and oxygen. The effective self-healing temperature range of different self-healing components was first summarized and distinguished. The structure, composition, and preparation process of CMC-SiC should be systematically designed and optimized to achieve long duration target.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Reference159 articles.
1. Dicarlo JA, Yun HM, Morscher GN, et al. Progress in SiC/SiC composites for engine applications. In: High Temperature Ceramic Matrix Composites. Krenkel W, Naslain R, Schneider H, Eds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2001: 777–782.
2. Naslain RR, Pailler RJF, Lamon JL. Single- and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview. Int J Appl Ceram Technol 2010, 7: 263–275.
3. Naslain RR. SiC-matrix composites: Nonbrittle ceramics for thermo-structural application. Int J Appl Ceram Technol 2005, 2: 75–84.
4. Dicarlo JA, van Roode M. Ceramic composite development for gas turbine engine hot section components. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, 2008: 221–231.
5. Christin F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater 2002, 4: 903–912.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献