Stress–strain behavior of Cu on the AMB‐Si3N4 substrate undergoing thermal cycles via in situ strain measurement

Author:

Ngo Minh Chu1ORCID,Miyazaki Hiroyuki1ORCID,Hirao Kiyoshi1ORCID,Ohji Tatsuki1ORCID,Fukushima Manabu1ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST) Nagoya Japan

Abstract

AbstractThe active metal brazing of a Si3N4 substrate with Cu has been evaluated for excellent reliability, demonstrating durability up to 1000 cycles in a cycling test ranging from −40°C to 250°C. While the finite element method (FEM) is commonly used for predicting thermal stress–strain in cyclic tests, experimental data on the measurement of thermal stress–strain on metallized substrates have remained limited. In this study, a digital image correlation (DIC) method was employed for the in situ measurement of thermal strain on a fully Cu‐coated Si3N4 substrate (AMB‐SN substrate) in various consecutive thermal cycles, ranging from 1–2 to 199–200. The thermal strains exhibited hysteresis curves that expanded slightly with cycles. By incorporating the coefficients of thermal expansion (CTE) of plain Cu and Si3N4, both the thermal stress and strain of Si3N4 and Cu on the AMB‐SN substrate were computed. The stress–strain curves of Cu revealed that the yield stress of Cu increased with the number of cycles, attributed to the cyclic hardening of the Cu layer. The Cu stress–strain curve calculated in this work showed a good agreement with the previous results obtained from compression/tension test of Cu at room temperature, which indicates the stress–strain curve of Cu on the composite was not sensitive to the temperature during the thermal cycle.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3