MdNAC104 positively regulates apple cold tolerance via CBF‐dependent and CBF‐independent pathways

Author:

Mei Chuang12,Yang Jie1,Mei Quanlin1,Jia Dongfeng1,Yan Peng2,Feng Beibei2,Mamat Aisajan2,Gong Xiaoqing1,Guan Qingmei1,Mao Ke1,Wang Jixun2,Ma Fengwang1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture Northwest A & F University Yangling Shaanxi China

2. The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops Xinjiang Academy of Agricultural Sciences Urumqi China

Abstract

SummaryLow temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104‐overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis‐related genes, including MdCHS‐b, MdCHI‐a, MdF3H‐a and MdANS‐b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme‐encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF‐dependent and CBF‐independent pathways.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3