Genome-Wide Characterization of IQD Family Proteins in Apple and Functional Analysis of the Microtubule-Regulating Abilities of MdIQD17 and MdIQD28 under Cold Stress

Author:

Zhang Yu1ORCID,Wang Shengjie1,Zhang Chaochao1,Qi Meng1ORCID,Liu Luoqi1,Yang Lipeng1,Lian Na1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

Abstract

Microtubules undergo dynamic remodeling in response to diverse abiotic stress in plants. The plant-specific IQ67 DOMAIN (IQD) family proteins serve as microtubule-associated proteins, playing multifaceted roles in plant development and response to abiotic stress. However, the biological function of IQD genes in apple remains unclear. In this study, we conducted a comprehensive analysis of the Malus domestica genome, identifying 42 IQD genes distributed across 17 chromosomes and categorized them into four subgroups. Promoter analysis revealed the presence of stress-responsive elements. Subsequent expression analysis highlighted the significant upregulation of MdIQD17 and MdIQD28 in response to cold treatments, prompting their selection for further functional investigation. Subcellular localization studies confirmed the association of MdIQD17 and MdIQD28 with microtubules. Crucially, confocal microscopy and quantification revealed diminished microtubule depolymerization in cells transiently overexpressing MdIQD17 and MdIQD28 compared to wild-type cells during cold conditions. In conclusion, this study provides a comprehensive analysis of IQD genes in apple, elucidating their molecular mechanism in response to cold stress.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3