Effects of Phyllostachys nigra var. henonis bloom for the first time in 120 years on the dynamics of organic matter and nitrogen in forest: Differences in decomposition processes between leaf and flower

Author:

Enoki Tsutomu1ORCID,Orrego Marly2ORCID

Affiliation:

1. Ashoro Research Forest, Kyushu University Ashoro Japan

2. Faculty of Agriculture, Kyushu University Sasaguri Japan

Abstract

AbstractBamboo flowering occurs over a long cycle, yet the precise mechanisms and consequences of this phenomenon remain unknown. Although several studies have investigated the dynamics of forest communities post‐flowering, the effects of flowering on the material cycle remain unclear. Recent reports have documented the first flowering of Phyllostachys nigra var. henonis in 120 years across several regions of Japan. P. nigra var. henonis flowers exhibit higher nitrogen concentrations compared to their leaves, suggesting potentially different decomposition patterns upon reaching the forest floor and subsequent contributions to the nitrogen cycle. Based on this observation, we conducted decomposition experiments using litter bags to investigate the dynamics of organic matter and nitrogen. After 1 year, litter bags containing both leaves and flowers were retrieved. The remaining mass of flower and leaf litter was 38% and 60%, respectively. On the other hand, the nitrogen remaining in flower and leaf litter was 54.9% and 98.2%, respectively. Net nitrogen release from the flower litter was estimated to be 36 kg/ha/year in the study site. The potential maximum nitrogen released from flower litter decomposition in a high‐density ramet stand was estimated to be 221 kg/ha/year. The results of this study suggest that the nitrogen addition through mass flowering of P. nigra var. henonis would have a significant impact on the nitrogen cycle of the ecosystem.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3