Diagenesis, compaction strain and deformation associated with chert and carbonate concretions in organic‐rich marl and phosphorite; Upper Cretaceous to Eocene, Jordan

Author:

Abu‐Mahfouz Israa S.1ORCID,Cartwright Joe A.2,Powell John H.3,Abu‐Mahfouz Mohammad S.4,Podlaha Olaf G.5

Affiliation:

1. Department of Geosciences, College of Petroleum Engineering & Geosciences (CPG) King Fahd University of Petroleum & Minerals (KFUPM) Dhahran 31261 Saudi Arabia

2. Department of Earth Sciences University of Oxford South Parks Road Oxford OX1 3AN UK

3. British Geological Survey Nicker Hill, Keyworth Nottingham NG12 5GG UK

4. School of Health and Education Middlesex University The Burroughs London NW4 4BT UK

5. Shell Global Solutions International B.V., Projects and Technology Rijswijk 2288 ER The Netherlands

Abstract

ABSTRACTThis paper presents an integrated petrographic–geochemical–geomechanical study of the growth mechanisms of carbonate and chert concretions observed at outcrop and core from the Upper Cretaceous to Eocene organic‐rich carbonate mudrocks, central Jordan. It provides evidence for displacive and replacive concretion growth from the analysis of primary lithological characteristics, compaction strain and deformation structures associated with concretion growth. Concretions were analysed to determine the primary lithological controls on their development and the measurement of strain in the host rock to develop a method for constraining the growth mode and their paragenesis. Concretions exhibit either a replacive or displacive growth mode largely dependent on the original host lithology. Displacive concretions exhibit irregular shapes and semi‐fibrous internal structures in contrast to regular shapes and microcrystalline textures observed for replacive concretions. Cement fraction is high in both carbonate concretion types, indicating early formation in high‐porosity sediments at shallow burial depths. The strain field around displacive concretions is vertically asymmetrical. Conversely, it is symmetrical with uniform differential compaction for the replacive concretions. Evidence for displacive growth comes from triangular areas of chert at the lateral margins of some carbonate concretions, interpreted as areas of reduced strain. Another indicator is the forced asymmetrical folding of heterolithic host rocks around displacive concretions, with displacive carbonate units separated by trace laminae of the original (chert) beds. Enveloping chert beds exhibit early‐formed radial silica fractures with increased aperture size in the areas of maximum curvature. Carbon isotopic signatures of carbonate concretions show a strong correlation between concretion centres and host rock, suggesting a relatively shallow depth (first few tens of metres) of initial growth. Carbonate concretions are interpreted to have formed at shallow depths in the presence of alkaline pore waters rich in dissolved organic carbon in the presence of Mg2+ ions, available organic matter and redox‐sensitive metals such as U and Mo. A paragenetic history for the different concretion types is presented.

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3