Microstructural BIB-SEM investigation of Upper Cretaceous Jordanian carbonate-rich oil shales bearing type II-S kerogen

Author:

Klaver J.ORCID,Grohmann S.,Gaus G.,Abu-Mahfouz I. S.,Patzek T.,Vahrenkamp V.,Urai J. L.

Abstract

AbstractIn this study, we use Broad Ion Beam polishing and Scanning Electron Microscopy (BIB-SEM) to characterize the microstructure of selected core samples of immature Upper Cretaceous carbonate-rich oil shales from Jordan and to link the observations to porosity and compositional and geochemical data. The aim of this study is to understand the distribution of pore space, primary organic matter, and organic sulfur on a sub-micron scale, particularly in carbonate- and silicate-dominated layers. The thermal maturity of these marine carbonate mudstone samples of pelagic origin was found to be influenced by the elevated sulfur contents in these Type II-S kerogen source rocks. This was confirmed through both organic geochemistry and BIB-SEM observations, which revealed high sulfur content. Porosity in the carbonate mudstone exists within foraminifera, and aggregates of microfossil fragments. Initially, these voids provided significant inter- and intra-particle porosity which were later filled by organic matter during diagenesis. This ‘mobile’ organic matter is interpreted as microscopic bitumen, which exists as a solid or highly viscous fluid at surface conditions. It is likely a residue of low-temperature (“early”) bitumen generation. By examining the samples before and after dichloromethane (DCM) extraction and subsequent BIB-SEM analyses, we observed that the specimens contained a significant amount of soluble organic matter (SOM), mostly present in the micropores associated with calcite. The microscopic solid bitumen is observed to remain stable even under various conditions, such as in vacuum oven conditions of 105 °C (24 h), or exposure to ultra-high vacuum, broad ion beam (heat > 70 °C) and an electron beam of 15 keV. This suggests that the solid bitumen acts as a solid at elevated temperatures and confining pressures (85 °C and 250 MPa), and its presence can lead to the buildup of significant fluid overpressures. Our observations indicate that the pores associated with calcite provide high storage capacity in the shales during the early stages of hydrocarbon generation. In contrast, it suggests that siliciclastic-rich samples are more prone to hydrofracturing as the (early) generated hydrocarbons cannot be expelled easily. These findings highlight the complex distribution and behavior of pore space, organic matter, and sulfur in shales, shedding light on their potential for hydrocarbon generation and storage. Graphical abstract

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3