Investigating the reliability of aggregate measurements of learning process data: From theory to practice

Author:

Zhang Yingbin1ORCID,Ye Yafei2ORCID,Paquette Luc3ORCID,Wang Yibo4,Hu Xiaoyong15

Affiliation:

1. Institute of Artificial Intelligence in Education South China Normal University Guangzhou China

2. School of International Studies Zhengzhou University Zhengzhou China

3. Department of Curriculum and Instruction University of Illinois at Urbana‐Champaign Urbana Illinois USA

4. Department of Psychological and Quantitative Foundations University of Iowa Iowa City Iowa USA

5. School of Information Technology in Education South China Normal University Guangzhou China

Abstract

AbstractBackgroundLearning analytics (LA) research often aggregates learning process data to extract measurements indicating constructs of interest. However, the warranty that such aggregation will produce reliable measurements has not been explicitly examined. The reliability evidence of aggregate measurements has rarely been reported, leaving an implicit assumption that such measurements are free of errors.ObjectivesThis study addresses these gaps by investigating the psychometric pros and cons of aggregate measurements.MethodsThis study proposes a framework for aggregating process data, which includes the conditions where aggregation is appropriate, and a guideline for selecting the proper reliability evidence and the computing procedure. We support and demonstrate the framework by analysing undergraduates' academic procrastination and programming proficiency in an introductory computer science course.Results and ConclusionAggregation over a period is acceptable and may improve measurement reliability only if the construct of interest is stable during the period. Otherwise, aggregation may mask meaningful changes in behaviours and should be avoided. While selecting the type of reliability evidence, a critical question is whether process data can be regarded as repeated measurements. Another question is whether the lengths of processes are unequal and individual events are unreliable. If the answer to the second question is no, segmenting each process into a fixed number of bins assists in computing the reliability coefficient.Major TakeawaysThe proposed framework can be a general guideline for aggregating process data in LA research. Researchers should check and report the reliability evidence for aggregate measurements before the ensuing interpretation.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3