Automated tea quality identification based on deep convolutional neural networks and transfer learning

Author:

Zhang Cheng1ORCID,Wang Jin1ORCID,Lu Guodong1,Fei Shaomei1,Zheng Tao1,Huang Bincheng23

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China

2. Key Laboratory of Cognition and Intelligence Technology China Electronics Technology Group Corporation Beijing China

3. Information Science Academy China Electronics Technology Group Corporation Beijing China

Abstract

AbstractDifferent quality grades of tea tend to have a high degree of similarity in appearance. Traditional image‐based identification methods have limited effects, while complex deep learning architectures require much data and long‐term training. In this paper, two tea quality identification methods based on deep convolutional neural networks and transfer learning are proposed. Different types and quality of tea images are collected by a self‐designed computer vision system to form a data set, which is small‐scale and of high inter‐ and intraclass similarity. The first method uses three simplified convolutional neural network (CNN) models with different image input sizes to identify the quality of tea. The second method performs transfer learning to identify the tea quality by fine‐tuning the mature AlexNet and ResNet50 architecture. Classification performance and model complexity are measured and compared. The related application software is also developed. The results show that the performance of the CNN models and the transfer learning models are close, and both can achieve high identification accuracy. However, the complexity of the CNN models is two to three orders of magnitude lower than that of the transfer learning models. The study shows that deep CNNs and transfer learning have great potential to be rapid and effective methods for automated tea quality identification tasks with high inter‐ and intrasimilarity.

Publisher

Wiley

Subject

General Chemical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Destructive Prediction of Bread Staling Using Artificial Intelligence Methods;Bitlis Eren Üniversitesi Fen Bilimleri Dergisi;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3