The determining factors of hydrogen isotope offsets between plants and their source waters

Author:

Zhao Liangju1ORCID,Liu Xiaohong2ORCID,Wang Ninglian1ORCID,Barbeta Adrià3ORCID,Zhang Yu2ORCID,Cernusak Lucas A.4ORCID,Wang Lixin5ORCID

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences Northwest University Xi'an 710069 China

2. School of Geography and Tourism Shaanxi Normal University Xi'an 710119 China

3. BEECA, Department of Evolutionary Biology, Ecology and Environmental Sciences Universitat de Barcelona Barcelona Catalonia 08007 Spain

4. College of Science and Engineering James Cook University Cairns QLD 4878 Australia

5. Department of Earth and Environmental Sciences Indiana University Indianapolis (IUI) Indianapolis IN 46202 USA

Abstract

Summary A fundamental assumption when using hydrogen and oxygen stable isotopes to understand ecohydrological processes is that no isotope fractionation occurs during plant water uptake/transport/redistribution. A growing body of evidence has indicated that hydrogen isotope fractionation occurs in certain environments or for certain plant species. However, whether the plant water source hydrogen isotope offset (δ2H offset) is a common phenomenon and how it varies among different climates and plant functional types remains unclear. Here, we demonstrated the presence of positive, negative, and zero offsets based on extensive observations of 12 plant species of 635 paired stable isotopic compositions along a strong climate gradient within an inland river basin. Both temperature and relative humidity affected δ2H offsets. In cool and moist environments, temperature mainly affected δ2H offsets negatively due to its role in physiological activity. In warm and dry environments, relative humidity mainly affected δ2H offsets, likely by impacting plant leaf stomatal conductance. These δ2H offsets also showed substantial linkages with leaf water 18O enrichment, an indicator of transpiration and evaporative demand. Further studies focusing on the ecophysiological and biochemical understanding of plant δ2H dynamics under specific environments are essential for understanding regional ecohydrological processes and for conducting paleoclimate reconstructions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3