Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines

Author:

Jarc Tina1,Novak Maša2,Hevir Neli3,Rižner Tea Lanišnik4,Kreft Mateja Erdani1,Kristan Katja45ORCID

Affiliation:

1. Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

2. Hexal AG, Holzkirchen, Germany

3. Biopharma Process & Product Development, Lek Pharmaceuticals d.d., Mengeš, Slovenia

4. Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

5. Sandoz Development Center Slovenia, Lek Pharmaceuticals, d.d., Ljubljana, Slovenia

Abstract

Abstract Objective According to the regulatory guidelines, one of the critical steps in using in-vitro permeability methods for permeability classification is to demonstrate the suitability of the method. Here, suitability of the permeability method by using a monolayer of cultured epithelial cells was verified with different criteria. Methods Imaging with a transmission electron microscope was used for characterisation of the cells. Monolayer integrity was confirmed by transepithelial electrical resistance measurements and permeability of zero permeability marker compounds. Real-time polymerase chain reaction was employed to evaluate expression levels of 84 known transporters. Samples for bidirectional permeability determination were quantified by ultra-performance liquid chromatography. Key findings The Caco-2 cells grow in an intact monolayer and morphologically resemble enterocytes. Genes of 84 known transporters were expressed at different levels; furthermore, expression was time depended. Functional expression of efflux transporter P-glycoprotein was confirmed. We established a correlation between permeability coefficients of 21 tested drug substances ranging from low, moderate and high absorption with human fraction absorbed literature data (R2 = 0.84). Conclusions Assay standardisation assures the consistency of experimental data. Only such fully characterised model has the ability to accurately predict drug's intestinal permeability at the early stage of research or for the BCS-based biowaiver application.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3