Affiliation:
1. MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences Lanzhou University Lanzhou China
2. State Key Laboratory of Grassland Agro‐Ecosystem, College of Ecology Lanzhou University Lanzhou China
3. College of Cuiying Honors Lanzhou University Lanzhou China
Abstract
AbstractAdequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild‐type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen‐fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2‐yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia‐infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献