The grain size distribution of matrix in primitive chondrites

Author:

Vaccaro E.1ORCID,Wozniakiewicz P.2,Franchi I. A.3ORCID,Starkey N.3,Russell S. S.13ORCID

Affiliation:

1. Mineral and Planetary Sciences Division The Natural History Museum London UK

2. School of Physical Sciences University of Kent Canterbury UK

3. Planetary & Space Sciences Open University Milton Keynes UK

Abstract

AbstractThe matrix of primitive chondrites is composed of submicron crystals embedded in amorphous silicates. These grains are thought to be the remains of relatively unprocessed dust from the inner regions of the protoplanetary disk. The matrix of primitive meteorites is often compared to chondritic porous interplanetary dust particles (CP‐IDPs) which are believed to be of cometary origin, having accreted in the outermost regions of the solar nebula. Crystalline grains in CP‐IDPs show evidence of a size–density relationship between the silicates and sulfides suggesting that these components experienced sorting prior to accretion. Here, we investigate whether such evidence of sorting is also present in the matrix constituents of primitive chondrites. We report findings from our study of grain size distributions of discrete silicate and opaque (sulfide and metal) grains within the matrix of the primitive meteorites Acfer 094 (C2‐ung.), ALHA77307 (CO3), MIL 07687 (C3‐ung.), and QUE 99177 (CR2). Mean radii of matrix silicate grains range from 103 nm in QUE 99177 to 2018 nm in MIL 07687. The opaque grains show a wider variation, with average radii ranging from 15 nm in QUE 99177 to 219 nm in MIL07687. Our results indicate that, in contrast to CP‐IDPs, the size distribution of matrix components of these primitive meteorites cannot be explained by aerodynamic sorting that took place prior to accretion. We conclude that any evidence of sorting is likely to have been lost due to a greater variety and degree of processing experienced on these primitive chondrites than on cometary parent bodies.

Funder

Science and Technology Facilities Council

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3