Model fitting for small skin permeability data sets: hyperparameter optimisation in Gaussian Process Regression

Author:

Ashrafi Parivash1,Sun Yi1,Davey Neil1,Adams Roderick G1,Wilkinson Simon C2,Moss Gary Patrick3ORCID

Affiliation:

1. School of Computer Science, University of Hertfordshire, Hatfield, UK

2. Medical Toxicology Centre, Wolfson Unit, Medical School, University of Newcastle-upon-Tyne, Newcastle upon Tyne, UK

3. The School of Pharmacy, Keele University, Keele, UK

Abstract

Abstract Objectives The aim of this study was to investigate how to improve predictions from Gaussian Process models by optimising the model hyperparameters. Methods Optimisation methods, including Grid Search, Conjugate Gradient, Random Search, Evolutionary Algorithm and Hyper-prior, were evaluated and applied to previously published data. Data sets were also altered in a structured manner to reduce their size, which retained the range, or ‘chemical space’ of the key descriptors to assess the effect of the data range on model quality. Key findings The Hyper-prior Smoothbox kernel results in the best models for the majority of data sets, and they exhibited significantly better performance than benchmark quantitative structure–permeability relationship (QSPR) models. When the data sets were systematically reduced in size, the different optimisation methods generally retained their statistical quality, whereas benchmark QSPR models performed poorly. Conclusions The design of the data set, and possibly also the approach to validation of the model, is critical in the development of improved models. The size of the data set, if carefully controlled, was not generally a significant factor for these models and that models of excellent statistical quality could be produced from substantially smaller data sets.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3