Development of a Gaussian Process – feature selection model to characterise (poly)dimethylsiloxane (Silastic®) membrane permeation

Author:

Sun Yi1,Hewitt Mark2,Wilkinson Simon C3,Davey Neil1,Adams Roderick G1,Gullick Darren R4,Moss Gary P5ORCID

Affiliation:

1. School of Computer Science, University of Hertfordshire, Hatfield, UK

2. School of Pharmacy, University of Wolverhampton, Wolverhampton, UK

3. School of Biomedical, Nutritional and Sports Sciences, Medical School, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK

4. School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK

5. The School of Pharmacy, Keele University, Keele, UK

Abstract

Abstract Objectives The current study aims to determine the effect of physicochemical descriptor selection on models of polydimethylsiloxane permeation. Methods A total of 2942 descriptors were calculated for a data set of 77 chemicals. Data were processed to remove redundancy, single values, imbalanced and highly correlated data, yielding 1363 relevant descriptors. For four independent test sets, feature selection methods were applied and modelled via a variety of Machine Learning methods. Key findings Two sets of molecular descriptors which can provide improved predictions, compared to existing models, have been identified. Best permeation predictions were found with Gaussian Process methods. The molecular descriptors describe lipophilicity, partial charge and hydrogen bonding as key determinants of PDMS permeation. Conclusions This study highlights important considerations in the development of relevant models and in the construction and use of the data sets used in such studies, particularly that highly correlated descriptors should be removed from data sets. Predictive models are improved by the methodology adopted in this study, notably the systematic evaluation of descriptors, rather than simply using any and all available descriptors, often based empirically on in vitro experiments. Such findings also have clear relevance to a number of other fields.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3