Drought‐induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada's boreal forests from 1970 to 2020

Author:

Liu Qiuyu12ORCID,Peng Changhui12ORCID,Schneider Robert3ORCID,Cyr Dominic4ORCID,McDowell Nate G.56ORCID,Kneeshaw Daniel2ORCID

Affiliation:

1. Department of Biology Sciences Institute of Environment Sciences, University of Quebec at Montreal Montreal Quebec Canada

2. Centre for Forest Research University of Quebec at Montreal Montreal Quebec Canada

3. University of Quebec at Rimouski—UQAR Rimouski Quebec Canada

4. Science and Technology Branch, Environment and Climate Change Canada Gatineau Quebec Canada

5. Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab Richland Washington USA

6. School of Biological Sciences Washington State University Pullman Washington USA

Abstract

AbstractCanada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought‐induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha−1 year−1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year−1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3