Affiliation:
1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center Sun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science Guangzhou China
Abstract
AbstractReactive oxygen species (ROS) and oxidative stress accelerate cellular aging, but their impact on different tissues varies. The cornea, known for its robust antioxidant defense systems, is relatively resistant to age‐related diseases like cancer. However, the precise mechanisms by which the cornea maintains ROS homeostasis during aging remain unclear. Through comparative single‐cell transcriptomic analysis of the cornea and other tissues in young and old nonhuman primates, we identified that a ZNF281 coding transcriptomic program is specifically activated in cornea during aging. Further investigation revealed that ZNF281 forms a positive feedback loop with FOXO3 to sense elevated levels of ROS and mitigate their effects potentially by regulating the mitochondrial respiratory chain and superoxide dismutase (SOD) expression. Importantly, we observed that overexpression of ZNF281 in MSCs prevented cellular senescence. In summary, these findings open up possibilities for understanding tissue‐specific aging and developing new therapies targeting ROS damage.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China