Excellent electromagnetic wave absorption properties of SiCN ceramic aerogels via a controlled hydrosilylation reaction

Author:

You Guiqin1,Han Daoyang1,Tian Huijie1,Liang Junfang1,Wang Chang‐An2,Yuan Keke1,He Jilin1,Li Mingliang1,Wang Hailong1,Zhang Rui13,Shao Gang1

Affiliation:

1. School of Materials Science and Engineering Zhengzhou University Zhengzhou China

2. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing China

3. School of Materials Science and Engineering Luoyang Institute of Science and Technology Luoyang China

Abstract

AbstractPolymer‐derived ceramic materials exhibit adjustable composition, microstructure, and dielectric properties and are widely used as high temperature microwave absorption materials in the aerospace field. In this study, polymer‐derived SiCN ceramic aerogels with excellent electromagnetic wave absorption (EMA) properties were successfully fabricated through a combination of the sol‐gel, freeze‐ drying, and polymer precursor conversion methods. The hydrosilylation reaction between the Si‐H bond in polysilazane (a polymer ceramic precursor) and the C = C bond in divinylbenzene (a cross‐linking agent) occurs to form a wet gel. The effects of the molar ratios of the two bonds (C = C/Si‐H) on the microstructure and EMA properties of the SiCN ceramic aerogels were systematically studied. At a C = C/Si–H molar ratio of 1.25:1, the minimum reflection loss of the SiCN ceramic aerogels is −37.57 dB at 10.88 GHz. Moreover, the corresponding effective absorption bandwidth covers almost the entire X‐band, showing excellent EMA properties.

Funder

National Natural Science Foundation of China

Henan Province University Innovation Talents Support Program

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3