Author:
Ye Xinli,Chen Zhaofeng,Ai Sufen,Hou Bin,Zhang Junxiong,Liang Xiaohui,Zhou Qianbo,Liu Hezhou,Cui Sheng
Abstract
Abstract
Porous three-dimensional SiC/melamine-derived carbon foam (3D-SiC/MDCF) composite with an original open pore structure was fabricated by the heat treatment of the commercial melamine foam (MF), carbonization of the stable MF, and chemical vapor deposition of the ultra-thin SiC coating. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the microstructure and morphology of the as-prepared composites. The results indicated that the 3D-SiC/MDCF composites with the coating structure were prepared successfully. The obtained minimum reflection loss was -29.50 dB when the frequency and absorption thickness were 11.36 GHz and 1.75 mm, respectively. Further, a novel strategy was put forward to state that the best microwave absorption property with a thin thickness of 1.65 mm was gained, where the minimum reflection loss was -24.51 dB and the frequency bandwidth was 3.08 GHz. The excellent electromagnetic wave absorption ability resulted from the specific cladding structure, which could change the raw dielectric property to acquire excellent impedance matching. This present work had a certain extend reference meaning for the potential applications of the lightweight wave absorption materials with target functionalities.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献