Attenuating free‐surface multiples and ghost reflection from seismic data using a trace‐by‐trace convolutional neural network approach

Author:

Kiraz Mert S. R.1,Snieder Roel1,Sheiman Jon

Affiliation:

1. Center for Wave Phenomena Colorado School of Mines Golden Colorado USA

Abstract

AbstractThe presence of the air–water interface (or free‐surface) creates two major problems in marine seismic data for conventional seismic processing and imaging: free‐surface multiples and ghost reflections. The attenuation of free‐surface multiples remains one of the most challenging noise attenuation problems in seismic data processing. Current solutions suffer from the removal of the primary events along with the multiple events especially when the primary and multiple events overlap (e.g., adaptive subtraction). The effective attenuation of ghost reflections (or deghosting) requires acquisition‐ and/or processing‐related solutions which generally address the source‐side and receiver‐side ghosts separately. Additionally, an essential requirement for a successful implementation of free‐surface multiple attenuation and seismic dehosting is the requirement of dense seismic data acquisition parameters which is not realistic for two‐dimensional and/or three‐dimensional marine cases. We present a convolutional neural network approach for free‐surface multiple attenuation and seismic deghosting. Unlike the existing solutions, our approach operates on a single trace at a time, and neither relies on the dense acquisition parameters nor requires a subtraction process to eliminate free‐surface multiples, and it removes both the source ghost and receiver ghost simultaneously. We train a network using subsets of the Marmousi and Pluto velocity models and make predictions using subsets of the Sigsbee velocity model. We show that the convolutional neural network predictions give a correlation coefficient of 0.97 on average with the numerically modeled data for the synthetic examples. We illustrate the efficacy of our convolutional neural network–based technique using the Mobil AVO Viking Graben field data set. The application of our algorithm demonstrates that our convolutional neural network–based approach removes different orders of free‐surface multiples (e.g., first and second orders) and recovers the low‐frequency content of the seismic data (which is essential for, for instance, full‐waveform inversion applications and broadband processing) by successfully removing the ghost reflections while preserving and increasing the continuity of the primary reflection.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3