Influence of rare‐earth elements on the ionic conductivity of LATP electrolyte and its application in assembled cells

Author:

Lu Xiaojuan1ORCID,Li Ziqian1,Liu Songtao1,Huang Ke1,Hai Jiankang1

Affiliation:

1. Department of Environmental Science and Engineering North China Electric Power University Baoding P. R. China

Abstract

AbstractRare earth elements (Pr, Eu, Lu) with larger ionic radius and lower electronegativity were used to dope NASICON type solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) by solid state method. The effects of the types and the doping amounts of rare earth elements on the properties of LATP were investigated systematically. A test cell of Li4Ti5O12//Lu‐LATP//LiCoO2 was assembled and the cycling performance was evaluated. The failure mechanism of the test cell was analyzed. The relative density, cell volumes, and the total ionic conductivity of LATP were increased upon doping of rare‐earth elements. The grain sizes and the electronic conductivity were decreased. Among the three rare earth elements studied, Lu doped LATP achieved the highest total ionic conductivity of 3.6 × 104 S/cm, with the lowest activation energy of 0.23 ev, and the electronic conductivity was one order of magnitude lower than that of un‐doped LATP. The enhancement of the total conductivity was ascribed to the synergized effect of the increase of the relative density, the enlargement of the cell volumes and the broadening of Li+ migration window owing to the larger ionic radius and the lower electronegativity of the rare earth elements. Based on the relaxation time distribution spectra, the failure mechanism of the assembled cell was attributed to the degradation of the electrolytes and the irreversible decomposition of electrodes.

Funder

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3