B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods

Author:

Ślubowska Wioleta,Montagne Lionel,Lafon Olivier,Méar François,Kwatek KonradORCID

Abstract

Two families of glasses in the Li2O-Al2O3-B2O3-TiO2-P2O5 system were prepared via two different synthesis routes: melt-quenching and ball-milling. Subsequently, they were submitted to crystallization and yielded the Li1.3Al0.3Ti1.7(PO4)3 (LATP)-based glass-ceramics. Glasses and corresponding glass-ceramics were studied by complementary X-ray diffraction (XRD) and 27Al, 31P, 7Li, 11B magic-angle spinning nuclear magnetic resonance (MAS NMR) methods in order to compare their structure and phase composition and elucidate the impact of boron additive on their glass-forming properties and crystallization process. XRD studies show that the addition of B2O3 improves the glass-forming properties of glasses prepared by either method and inhibits the precipitation of unwanted phases during heat treatment. MAS NMR studies allowed us to distinguish two LATP phases of slightly different chemical composition suggesting that LATP grains might not be homogeneous. In conclusion, the crystallization of boron-incorporated LATP glasses can is an effective way of obtaining LATP-based solid state electrolytes for the next generation of lithium-ion batteries provided the proper heat-treatment conditions are chosen.

Funder

Polish National Science Center

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3