Machine learning framework to predict pharmacokinetic profile of small molecule drugs based on chemical structure

Author:

Pillai Nikhil1ORCID,Abos Alexandra2,Teutonico Donato3,Mavroudis Panteleimon D.1ORCID

Affiliation:

1. Global DMPK Modeling & Simulation, Sanofi Cambridge Massachusetts USA

2. Commercial Data and Analytics, Sanofi Barcelona Spain

3. Translational Medicine & Early Development, Sanofi Vitry‐sur‐Seine France

Abstract

AbstractAccurate prediction of a new compound's pharmacokinetic (PK) profile is pivotal for the success of drug discovery programs. An initial assessment of PK in preclinical species and humans is typically performed through allometric scaling and mathematical modeling. These methods use parameters estimated from in vitro or in vivo experiments, which although helpful for an initial estimation, require extensive animal experiments. Furthermore, mathematical models are limited by the mechanistic underpinning of the drugs' absorption, distribution, metabolism, and elimination (ADME) which are largely unknown in the early stages of drug discovery. In this work, we propose a novel methodology in which concentration versus time profile of small molecules in rats is directly predicted by machine learning (ML) using structure‐driven molecular properties as input and thus mitigating the need for animal experimentation. The proposed framework initially predicts ADME properties based on molecular structure and then uses them as input to a ML model to predict the PK profile. For the compounds tested, our results demonstrate that PK profiles can be adequately predicted using the proposed algorithm, especially for compounds with Tanimoto score greater than 0.5, the average mean absolute percentage error between predicted PK profile and observed PK profile data was found to be less than 150%. The suggested framework aims to facilitate PK predictions and thus support molecular screening and design earlier in the drug discovery process.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3