Effect of heavy rare‐earth substitution on physical properties of BiFeO3 thin films and their photocatalytic application

Author:

Gholizadeh Ahmad1ORCID,Hosseini Sakineh1

Affiliation:

1. School of Physics Damghan University Damghan Iran

Abstract

AbstractHerein, heavy rare‐earth substituted bismuth ferrite thin films were prepared using a low‐temperature sol–gel‐assisted spin coating method. The substitution of heavy rare‐earth ions for Bi3+ leads to structural transformation from rhombohedral (R3c) for x = 0.05 to orthorhombic (Pnma) symmetry for x = 0.05, which was found to have a great effect on the surface morphology, optical band‐gap energy, and photocatalytic activity of a BiFeO3(BFO) thin film. Moreover, the optical properties of prepared films were investigated via UV–visible spectroscopy. For all samples, the bandgap energy values were between 1.18 and 1.65 eV. Moreover, the refractive index and extinction coefficient of samples were about 1.14–1.40 and 0.1–0.6, respectively. Photocatalytic properties of the samples were investigated by measuring the degradation of methylene blue dye under simulated solar irradiation. We found that the heavy rare‐earth substituted BFO thin films have better photocatalytic activity compared to pure BiFeO3 thin film. It was observed that prepared thin films could remove between 37.18% and 77.24% of dye after 180 min irradiation. This study confirms that prepared thin films are a suitable candidate for photocatalytic applications.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3