Synthesis and investigation of polyvinylpyrrolidone-polymer content on magnetic and electromagnetic properties of electrospun BiFeO3, SrFe12O19, α-Fe2O3 nanostructures

Author:

Salehi Moghaddam VahidORCID,Gholizadeh AhmadORCID

Abstract

Abstract A one-pot electrospinning technique was employed to synthesize polyvinylpyrrolidone (PVP)-based nanofibers containing bismuth ferrite (BiFeO3), strontium hexaferrite (SrFe12O19), and hematite (α-Fe2O3). The influence of PVP polymer concentration on structural properties revealed the formation of pure phases in all samples, except for BiFeO3 nanofibers, which contained an impurity Bi2Fe4O9 phase. Field-emission scanning electron microscope images showed that higher PVP concentrations resulted in longer, thicker nanofiber chains for all samples. Vibrating sample magnetometer analysis indicated that SrFe12O19 nanofibers exhibited strong ferrimagnetic properties with high saturation magnetization (60 emu g−1) and coercivity (5000 Oe), while the other samples displayed weaker magnetic properties. To address the fragility of nanofibers produced via the one-pot method, the highest PVP concentration nanofibers were incorporated into low and high concentrations of paraffin matrices. Electromagnetic testing showed that paraffin concentration significantly increased the real part of electrical permittivity for BiFeO3 nanofibers (from ∼2 to ∼4.5) compared to other compositions (∼2 to ∼3). Impedance results revealed that BiFeO3 nanofibers had the lowest resistance and likely higher reflectivity. Lastly, the real permittivity of nanofibers decreased with increasing frequency, aligning with Koop’s dielectric relaxation theory.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3