High‐strength Si–SiC lattices prepared by powder bed fusion, infiltration‐pyrolysis, and reactive silicon infiltration

Author:

Pelanconi Marco12ORCID,Bottacin Samuele1ORCID,Bianchi Giovanni1ORCID,Koch Dietmar3ORCID,Colombo Paolo24ORCID,Ortona Alberto1ORCID

Affiliation:

1. University of Applied Sciences (SUPSI): Mechanical Engineering and Materials Technology Institute (MEMTi) Polo Universitario Lugano Lugano Switzerland

2. Department of Industrial Engineering University of Padua Padua Italy

3. Institute of Materials Resource Management University of Augsburg Augsburg Germany

4. Department of Materials Science and Engineering The Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractThis study focuses on the design, additive manufacturing, and characterization of silicon carbide‐based components with complex geometries. These parts were produced using a novel hybrid technique, previously developed: powder bed fusion of polyamide was used to 3D print two different templates with complex architectures. Preceramic polymer infiltrations and pyrolysis with polycarbosilane and furan resin were performed to obtain the ceramic parts. The final densification was achieved with reactive or nonreactive silicon infiltrations according to four different strategies, producing ceramics comprised of crystalline βSiC, reaction‐bonded βSiC, and low residual silicon. The final gyroid samples (∼70 vol% macroporosity) exhibited a maximum compressive strength of 24.7 ± 2.2 MPa, with a skeleton density of 3.173 ± 0.022 g/cm3, and a relative density of 0.935 ± 0.016. These findings underscore the potential of this manufacturing approach and showcase its effectiveness in fabricating intricate ceramic structures for engineering applications as heat exchangers and catalytic supports.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3