Surface‐aware Mesh Texture Synthesis with Pre‐trained 2D CNNs

Author:

Kovács Áron Samuel1ORCID,Hermosilla Pedro1,Raidou Renata G.1ORCID

Affiliation:

1. TU Wien, Austria

Abstract

AbstractMesh texture synthesis is a key component in the automatic generation of 3D content. Existing learning‐based methods have drawbacks—either by disregarding the shape manifold during texture generation or by requiring a large number of different views to mitigate occlusion‐related inconsistencies. In this paper, we present a novel surface‐aware approach for mesh texture synthesis that overcomes these drawbacks by leveraging the pre‐trained weights of 2D Convolutional Neural Networks (CNNs) with the same architecture, but with convolutions designed for 3D meshes. Our proposed network keeps track of the oriented patches surrounding each texel, enabling seamless texture synthesis and retaining local similarity to classical 2D convolutions with square kernels. Our approach allows us to synthesize textures that account for the geometric content of mesh surfaces, eliminating discontinuities and achieving comparable quality to 2D image synthesis algorithms. We compare our approach with state‐of‐the‐art methods where, through qualitative and quantitative evaluations, we demonstrate that our approach is more effective for a variety of meshes and styles, while also producing visually appealing and consistent textures on meshes.

Publisher

Wiley

Reference61 articles.

1. ChenT. Q. SchmidtM.:Fast patch‐based style transfer of arbitrary style 2016. doi:10.48550/arXiv.1612.04337. 2

2. High quality solid texture synthesis using position and index histogram matching

3. CaoX. WangW. NagaoK.:Neural style transfer for point clouds 2019. doi:10.48550/arXiv.1903.05807. 2

4. CaoX. WangW. NagaoK. NakamuraR.: PSNet: A Style Transfer Network for Point Cloud Stylization on Geometry and Color. In2020 IEEE Winter Conference on Applications of Computer Vision (WACV)(2020) pp.3326–3334. doi:10.1109/WACV45572.2020.9093513. 2

5. ChenY. YuanQ. LiZ. LiuY. WangW. XieC. WenX. YuQ.:UPST‐NeRF: Universal Photorealistic Style Transfer of Neural Radiance Fields for 3D Scene 2022. doi:10.48550/arXiv.2208.07059. 10

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3