Promoting success in thin layer sediment placement: effects of sediment grain size and amendments on salt marsh plant growth and greenhouse gas exchange

Author:

Wilburn Brittany P.1ORCID,Raper Kirk12ORCID,Raposa Kenneth B.3ORCID,Gray Andrew B.4ORCID,Mozdzer Thomas J.5ORCID,Watson Elizabeth B.1ORCID

Affiliation:

1. Academy of Natural Sciences, Department of Biodiversity, Earth and Environmental Sciences Drexel University Philadelphia PA 19103 U.S.A.

2. Division of Science and Research New Jersey Department of Environmental Protection Trenton NJ U.S.A.

3. Narangansett Bay National Estuarine Research Reserve Prudence Island RI 02872 U.S.A.

4. Department of Environmental Sciences University of California Riverside CA 92521 U.S.A.

5. Department of Biology Bryn Mawr College 101 N Merion Avenue Bryn Mawr PA 19010 U.S.A.

Abstract

Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects of subsidence and sea level rise. However, TLP success may vary due to plant stress associated with reductions in nutrient availability and hydrologic flushing or through the creation of acid sulfate soils. This study examined the influence of sediment grain size and soil amendments on plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key U.S. salt marsh plants: Spartina alterniflora (synonym Sporobolus alterniflorus), Spartina patens (synonym Sporobolus pumilus), and Salicornia pacifica. We found that bioavailable nitrogen concentrations (measured as extractable NH4+‐N) and porewater pH and salinity were inversely related to grain size, while soil redox was more reducing in finer sediments. This suggests that utilizing finer sediments in TLP projects will result in a more reduced environment with higher nutrient availability, while larger grain sized sediments will be better flushed and oxygenated. We further found that grain size had a significant effect on vegetation biomass allocation and rates of gas exchange, although these effects were species‐specific. We found that soil amendments (biochar and compost) did not subsidize plant growth but were associated with increases in soil respiration and methane emissions. Biochar amendments were additionally ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions between sediment type and vegetation, emphasizing the limitations of soil amendments. The findings aid restoration project managers in making informed decisions regarding sediment type, target vegetation, and soil amendments for successful TLP projects.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3