The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol

Author:

Agegnehu Getachew,Bird Michael I.,Nelson Paul N.,Bass Adrian M.

Abstract

Deteriorating soil fertility and the concomitant decline in agricultural productivity are major concerns in many parts of the world. A pot experiment was conducted with a Ferralsol to test the hypothesis that application of biochar improves soil fertility, fertiliser-use efficiency, plant growth and productivity, particularly when combined with compost. Treatments comprised: untreated control; mineral fertiliser at rates of 280 mg nitrogen, 70 mg phosphorus and 180 mg potassium pot–1 (F); 75% F + 40 g compost pot–1 (F + Com); 100% F + 20 g willow biochar pot–1 (F + WB); 75% F + 10 g willow biochar + 20 g compost pot–1 (F + WB + Com); 100% F + 20 g acacia biochar pot–1 (F + AB); and 75% F + 10 g acacia biochar + 20 g compost pot–1 (F + AB + Com). Application of compost with fertiliser significantly increased plant growth, soil nutrient status and plant nutrient content, with shoot biomass (as a ratio of control value) decreasing in the order F + Com (4.0) > F + WB + Com (3.6) > F + WB (3.3) > F + AB + Com (3.1) > F + AB (3.1) > F (2.9) > control (1.0). Maize shoot biomass was positively significantly correlated with chlorophyll content, root biomass, plant height, and specific leaf weight (r = 0.99, 0.98, 0.96 and 0.92, respectively). Shoot and root biomass had significant correlations with soil water content, plant nutrient concentration, and soil nutrient content after harvesting. Principal component analysis (PCA) showed that the first component provided a reasonable summary of the data, accounting for ~84% of the total variance. As the plants grew, compost and biochar additions significantly reduced leaching of nutrients. In summary, separate or combined application of compost and biochar together with fertiliser increased soil fertility and plant growth. Application of compost and biochar improved the retention of water and nutrients by the soil and thereby uptake of water and nutrients by the plants; however, little or no synergistic effect was observed.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3