Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels

Author:

Yin Pengfei1,Fu Xiuyi12,Feng Haiying1,Yang Yanyan1,Xu Jing1,Zhang Xuan1,Wang Min1,Ji Shenghui1,Zhao Binghao1ORCID,Fang Hui1ORCID,Du Xiaoxia1,Li Yaru1,Hu Shuting1,Li Kun1,Xu Shutu1ORCID,Li Zhigang1,Liu Fang3ORCID,Xiao Yingni4,Wang Yuandong2,Li Jiansheng13,Yang Xiaohong135ORCID

Affiliation:

1. State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China China Agricultural University Beijing China

2. Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding Maize Research Institute Beijing Academy of Agriculture and Forestry Sciences (BAAFS) Beijing China

3. Center for Crop Functional Genomics and Molecular Breeding China Agricultural University Beijing China

4. Crops Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement Guangzhou Guangdong China

5. Frontiers Science Center for Molecular Design Breeding China Agricultural University Beijing China

Abstract

SummaryCarotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3