Emetine dihydrochloride alleviated radiation‐induced lung injury through inhibiting EMT

Author:

Wang Xin12,Li Mo3,Yin Jizhong4,Fang Jiayan5,Ying Yimeng5,Ye Tianxia5,Zhang Fangxiao5,Ma Shumei5,Qin Hongran6ORCID,Liu Xiaodong15

Affiliation:

1. Key Laboratory of Radiobiology (Ministry of Health), School of Public Health Jilin University Changchun China

2. Department of Neurology The Third Hospital of Jilin University Changchun China

3. Department of Thyroid Surgery The Second Hospital of Jilin University Changchun China

4. Department of Radiation Medicine, Faculty of Naval Medicine Naval Medical University Shanghai China

5. School of Public Health and Management Wenzhou Medical University Wenzhou China

6. Department of Nuclear Radiation, Shanghai Pulmonary Hospital, School of Medicine Tongji University Shanghai China

Abstract

AbstractRadiation‐induced lung injury (RILI), divided into early radiation pneumonia (RP) and late radiation‐induced pulmonary fibrosis (RIPF), is a common serious disease after clinical chest radiotherapy or nuclear accident, which seriously threatens the life safety of patients. There has been no effective prevention or treatment strategy till now. Epithelial‐mesenchymal transition (EMT) is a key step in the occurrence and development of RILI. In this study, we demonstrated that emetine dihydrochloride (EDD) alleviated RILI through inhibiting EMT. We found that EDD significantly attenuated EMT‐related markers, reduced Smad3 phosphorylation expression after radiation. Then, for the first time, we observed EDD alleviated lung hyperaemia and reduced collagen deposit induced by irradiation, providing protection against RILI. Finally, it was found that EDD inhibited radiation‐induced EMT in lung tissues. Our study suggested that EDD alleviated RILI through inhibiting EMT by blocking Smad3 signalling pathways. In summary, our results indicated that EDD is a novel potential radioprotector for RILI.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3