Plastid Genome Assembly Using Long‐read data

Author:

Zhou Wenbin1ORCID,Armijos Carolina E.2,Lee Chaehee3,Lu Ruisen4,Wang Jeremy5,Ruhlman Tracey A.6,Jansen Robert K.6,Jones Alan M.17,Jones Corbin D.15

Affiliation:

1. Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

2. Laboratorio de Biotecnología Vegetal Universidad San Francisco de Quito USFQ Quito Ecuador

3. Department of Plant Sciences University of California Davis Davis California USA

4. Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing China

5. Department of Genetics University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

6. Department of Integrative Biology University of Texas at Austin Austin Texas USA

7. Department of Pharmacology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Abstract

AbstractAlthough plastid genome (plastome) structure is highly conserved across most seed plants, investigations during the past two decades have revealed several disparately related lineages that experienced substantial rearrangements. Most plastomes contain a large inverted repeat and two single‐copy regions, and a few dispersed repeats; however, the plastomes of some taxa harbour long repeat sequences (>300 bp). These long repeats make it challenging to assemble complete plastomes using short‐read data, leading to misassemblies and consensus sequences with spurious rearrangements. Single‐molecule, long‐read sequencing has the potential to overcome these challenges, yet there is no consensus on the most effective method for accurately assembling plastomes using long‐read data. We generated a pipeline, plastid Genome Assembly Using Long‐read data (ptGAUL), to address the problem of plastome assembly using long‐read data from Oxford Nanopore Technologies (ONT) or Pacific Biosciences platforms. We demonstrated the efficacy of the ptGAUL pipeline using 16 published long‐read data sets. We showed that ptGAUL quickly produces accurate and unbiased assemblies using only ~50× coverage of plastome data. Additionally, we deployed ptGAUL to assemble four new Juncus (Juncaceae) plastomes using ONT long reads. Our results revealed many long repeats and rearrangements in Juncus plastomes compared with basal lineages of Poales. The ptGAUL pipeline is available on GitHub: https://github.com/Bean061/ptgaul.

Funder

National Science Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3