Morphological Structure Identification, Comparative Mitochondrial Genomics and Population Genetic Analysis toward Exploring Interspecific Variations and Phylogenetic Implications of Malus baccata ‘ZA’ and Other Species

Author:

Wang Xun1ORCID,Wang Daru1,Zhang Ruifen2,Qin Xin1,Shen Xiang1,You Chunxiang1

Affiliation:

1. Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China

2. Qingdao Apple Rootstock Research and Development Center, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China

Abstract

Malus baccata, a valuable germplasm resource in the genus Malus, is indigenous to China and widely distributed. However, little is known about the lineage composition and genetic basis of ‘ZA’, a mutant type of M. baccata. In this study, we compared the differences between ‘ZA’ and wild type from the perspective of morphology and ultrastructure and analyzed their chloroplast pigment content based on biochemical methods. Further, the complete mitogenome of M. baccata ‘ZA’ was assembled and obtained by next-generation sequencing. Subsequently, its molecular characteristics were analyzed using Geneious, MISA-web, and CodonW toolkits. Furthermore, by examining 106 Malus germplasms and 42 Rosaceae species, we deduced and elucidated the evolutionary position of M. baccata ‘ZA’, as well as interspecific variations among different individuals. In comparison, the total length of the ‘ZA’ mitogenome (GC content: 45.4%) is 374,023 bp, which is approximately 2.33 times larger than the size (160,202 bp) of the plastome (GC: 36.5%). The collinear analysis results revealed abundant repeats and genome rearrangements occurring between different Malus species. Additionally, we identified 14 plastid-driven fragment transfer events. A total of 54 genes have been annotated in the ‘ZA’ mitogenome, including 35 protein-coding genes, 16 tRNAs, and three rRNAs. By calculating nucleotide polymorphisms and selection pressure for 24 shared core mitochondrial CDSs from 42 Rosaceae species (including ‘ZA’), we observed that the nad3 gene exhibited minimal variation, while nad4L appeared to be evolving rapidly. Population genetics analysis detected a total of 1578 high-quality variants (1424 SNPs, 60 insertions, and 94 deletions; variation rate: 1/237) among samples from 106 Malus individuals. Furthermore, by constructing phylogenetic trees based on both Malus and Rosaceae taxa datasets, it was preliminarily demonstrated that ‘ZA’ is closely related to M. baccata, M. sieversii, and other proximate species in terms of evolution. The sequencing data obtained in this study, along with our findings, contribute to expanding the mitogenomic resources available for Rosaceae research. They also hold reference significance for molecular identification studies as well as conservation and breeding efforts focused on excellent germplasms.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

National Key Research and Development Program of China

Fruit Industry System of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3