Optimizing ErCas12a for efficient gene editing in Arabidopsis thaliana

Author:

Pietralla Janine1,Capdeville Niklas1ORCID,Schindele Patrick1ORCID,Puchta Holger1ORCID

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) Department of Molecular Biology Karlrsruhe Germany

Abstract

SummaryThe ErCas12a nuclease, also known as MAD7, is part of a CRISPR/Cas system from Eubacterium rectale and distantly related to Cas12a nucleases. As it shares only 31% sequence homology with the commonly used AsCas12a, its intellectual property may not be covered by the granted patent rights for Cas12a nucleases. Thus, ErCas12a became an attractive alternative for practical applications. However, the editing efficiency of ErCas12a is strongly target sequence‐ and temperature‐dependent. Therefore, optimization of the enzyme activity through protein engineering is especially attractive for its application in plants, as they are cultivated at lower temperatures. Based on the knowledge obtained from the optimization of Cas12a nucleases, we opted to improve the gene editing efficiency of ErCas12a by introducing analogous amino acid exchanges. Interestingly, neither of these mutations analogous to those in the enhanced or Ultra versions of AsCas12a resulted in significant editing enhancement of ErCas12a in Arabidopsis thaliana. However, two different mutations, V156R and K172R, in putative alpha helical structures of the enzyme showed a detectable improvement in editing. By combining these two mutations, we obtained an improved ErCas12a (imErCas12a) variant, showing several‐fold increase in activity in comparison to the wild‐type enzyme in Arabidopsis. This variant yields strong editing efficiencies at 22 °C which could be further increased by raising the cultivation temperature to 28 °C and even enabled editing of formerly inaccessible targets. Additionally, no enhanced off‐site activity was detected. Thus, imErCas12a is an economically attractive and efficient alternative to other CRISPR/Cas systems for plant genome engineering.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3